Palindromic width of wreath products

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Palindromic width of wreath products, metabelian groups, and max-n solvable groups

A group has finite palindromic width if there exists n such that every element can be expressed as a product of n or fewer palindromic words. We show that if G has finite palindromic width with respect to some generating set, then so does G oZr. We also give a new, self-contained, proof that finitely generated metabelian groups have finite palindromic width. Finally, we show that solvable group...

متن کامل

Rooted Wreath Products

We introduce “rooted valuation products” and use them to construct universal Abelian lattice-ordered groups (with prescribed set of components) [CHH] from the more classical theory of [Ha]. The Wreath product construction of [H] and [HMc] generalised the Abelian (lattice-ordered) group ideas to a permutation group setting to respectively give universals for transitive (`-) permutation groups wi...

متن کامل

Eigenvalues of Random Wreath Products

Steven N. Evans Department of Statistics #3860, University of California at Berkeley 367 Evans Hall, Berkeley, CA 94720-3860, U.S.A [email protected] Abstract Consider a uniformly chosen element Xn of the n-fold wreath product Γn = G o G o · · · o G, where G is a finite permutation group acting transitively on some set of size s. The eigenvalues of Xn in the natural sn-dimensional permuta...

متن کامل

Wreath Products of Permutation Classes

A permutation class which is closed under pattern involvement may be described in terms of its basis. The wreath product construction X o Y of two permutation classes X and Y is also closed, and we investigate classes Y with the property that, for any finitely based class X, the wreath product X o Y is also finitely based.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2017

ISSN: 0021-8693

DOI: 10.1016/j.jalgebra.2016.09.015